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Introduction
An organoid is an organ-like microstructure 

a few millimeters in size that can be artificially 
generated using cell culture methods. Under 
appropriate culture conditions, organoids 
can be grown from one or a few tissue cells, 
embryonic stem cells, or induced pluripotent 
stem cells. Unless mesenchymal stem cells have 
been used, organoids lack stroma and vessels; 
however, they still exhibit physiologically 
relevant organ-like properties. The generation 
of organoids requires pluripotent stem cells as 
starting material. Such cells are in a state from 
which they are capable of differentiating and 
structuring themselves together. The result 
of self-organization is tissue-like associations 
of differentiated cells that differ in shape and 
function. The structure of organoids at least 
partially resembles human or animal organs. 
Organoids are usually not formed on an agar 
layer; they require liquid culture medium that 
provides the opportunity to grow spatially in 
a 3D cell culture. The production of organoids 
requires a sterile cell culture laboratory to 
perform the sophisticated, constructive tissue 
engineering. This field of work and research in 
biotechnology may also use genetic engineering 
techniques, most notably the CRISPR/Cas 

method. The product range includes tiny 
models of internal organs (heart, stomach, 
intestine, kidney).

Amazing progress is being made with 
the complex structures of the brain. Such 
cerebral organoids model cerebral cortex, 
hippocampus, midbrain, hypothalamus, 
cerebellum, anterior pituitary, and ocular 
retina of humans, mammals, and less 
commonly other vertebrates. Protocols exist 
for growing them, which cause regions of the 
brain to develop. Researchers are developing 
mini-livers, or liver replacement tissue, which 
temporarily improves the performance of the 
liver. This involves reprogramming skin cells 
in the laboratory with four substances, the 
Yamanaka factors, which convert them into 
stem cells. From these cells, all cell types of the 
body, including healthy liver cells, are grown. 
Another option is to use adult liver cells from 
human tissue. These liver cells come from 
patients who are biopsied with a large needle. A 
third option is to stimulate the small functional 
tissue areas from an otherwise old, diseased 
liver with growth factors or certain proteins so 
that the stem cells or adult cells develop tiny 
three-dimensional structures: Organoids made 
of liver cells, special immune cells, bile ducts 
and blood vessels. Stem cells can first be grown 

Abstract
Organoids are groups of cells grown in the laboratory that have self- organized into cell structures 
resembling those of organs. The term "organoid" means "organ-like." In many cases, the cells and 
cell structures give organoids abilities similar to those of the organs they resemble. Brain organoids, 
for example, develop layers of nerve cells (neurons) with signaling activity and even "brain regions" 
that resemble areas of the human brain. Currently, organoids created by researchers may bear a strong 
resemblance to a fully mature organ in certain respects, but crucial differences still exist. Intestinal 
organoids have a variety of cellular structures that resemble parts of the intestinal mucosa, but are 
typically the size of a pea and thus not nearly as large or complex as our intestinal tract. But even though 
they are small, or do not correspond one hundred percent to entire organs, scientists can learn a lot from 
organoids. Experts believe that organoids represent the "next generation" of biological tools for research, 
drug development and medicine. Liver Organoid engineering could play an important role in treating 
and curing classic homocysteinuria in childhood by resetting the disturbed function of cystathion beta 
synthetase activity in the implanted organoid liver. This manuscript focus on liver organoid research to 
date with special attention to classic homocysteinuria in childhood.
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from patients' skin cells, and then "miniature brains" or "mini-
livers" can be grown from them, so-called "organoids". Stem cells 
can be grown from patients' skin cells and then used to grow 
"miniature brains" or "miniature livers", so-called "organoids". 
Researchers have transplanted mini-livers into sick mice. They 
grew amazingly well and took over the function of the damaged 
organ. The next step is to implant the liver organoids into the 
livers of deceased humans. In Vitro Engineering of Organoids 
is based on different steps. Step 1 is preparing a 2D preculture.

Organoids are generated from either primary cells (i.e. 
intestine, lung, or kidney) or induced pluripotent stem cells. 
Stem cells are capable of differentiating and self-assembling into 
a variety of specific organoids. Typically, cells are mixed with 
Matrigel and drops of this mixture are placed in a 24-well plate 
at room temperature.

The plates are then placed in an incubator to form solid 
droplet domes. Media is then added for seven or more days to 
promote cell growth and differentiation into a specific tissue 
(brain, intestine, lung, etc.). The media contains extracellular 
matrix (ECM) proteins and various growth factors that vary 
depending on which tissue is being generated. Organoid culture 
is a lengthy process and may involve several cultivation steps 
with different media. During this process, the health of the 
cells must be monitored using methods normally used to track 
developmental biology and understand tissues (imaging). Before 
experiments are performed, organoids must be reviewed and 
characterized to ensure they have the correct tissue structure 
and differentiation. High-content imaging allows for verification 
and visualization of organoid growth and differentiation, 3D 
reconstruction of structures, complex analyses of organoid 
structure, cell morphology and survival, and expression 
of various cell markers. Confocal imaging and 3D analysis 
of organoids allow visualization and quantification of the 
organoids and the cells that form the organoid. Characterization 
of multiple quantitative descriptive features of organoids can be 
applied to explore disease phenotypes and connectivity effects.

Types of Organoids (Epithelial/Multi-tissue and 
Multi-Organ)

Hepatocyte Liver Transplantation

These human liver cells are to be transplanted once into 
patients with liver disease and thus help regenerate their 
defective organ. But before the healing hepatocytes can be 
transplanted, they first have to be obtained. And that is not 
so easy. Because liver cells are very sensitive, it is tricky and 
expensive to isolate them from donor organs, This is done by 
perfusing the liver with a special buffer solution, with enzyme 
solutions, which means the solution runs through the organ, 
through the vessels, and thereby separates the tissue into a 
cell suspension. This is cryopreserved, that is, frozen, with a 
special freezing program, so that these cells can be thawed 
again at some point and viable liver cells are obtained again 
after thawing. After numerous experiments with pig livers, the 
process now also works with human hepatocytes. A cluster 
of cells can be seen under the microscope: Human liver cells 
showing all typical functions four days after thawing  potential 
raw material for liver cell therapy. The Hanover researchers want 
to start the first clinical tests as early as the next six months. But 
even if they are successful, one drawback will remain: Because 
the isolated liver cells hardly reproduce in the laboratory, only 
as much tissue can be transplanted as was previously cut out of 
a donor organ. Primary adult hepatocytes are not appreciably 

proliferative in vitro, despite long intensive research. In contrast, 
stem cells can be derived from regenerable cell resources like 
bone marrow. Adult stem cells from bone marrow can turn into 
liver cells after transplantation, this was recently demonstrated 
in the USA. The decisive advantage here is that because stem 
cells can be easily multiplied in the laboratory, physicians could 
have as much healthy liver tissue available as they want in the 
not too distant future. Paradise conditions for surgeons. But 
until this dream comes true, researchers must first understand 
what actually happens when a stem cell transforms into a liver 
cell. The mechanisms of this cell differentiation are still largely 
in the dark. And until they are deciphered, clinical application 
remains risky. So for the time being, donor organs remain the 
only source of liver cells.

Mesenchymal Stem Cell Transplantation

Mesenchymal stem cells (MSCs) are multipotent progenitor 
cells of various cell types derived from mesenchyme.  They  
can  differentiate into osteoblasts (bone cells), chondrocytes 
(cartilage cells), myocytes (muscle cells) and adipocytes (fat 
cells), among others. In addition, differentiation into neurons, 
astrocytes, and oligodendrocytes (cells of the nervous system) 
has also been observed. Mesenchymal stem cells have a high 
proliferation and differentiation potential. Adult mesenchymal 
stem cells contribute to the  maintenance  and regeneration 
of supporting and connective tissues, such as bone, cartilage, 
muscle, ligaments, tendons, and adipose tissue. They also 
support the growth and development of blood progenitor cells 
in the bone marrow (hematopoiesis). MSCs can be isolated from 
almost all tissues (bone marrow, cartilage, adipose tissue, muscle, 
liver tissue, blood, amniotic fluid). Due to  the  very  high  MSC  
content  as  well  as the good accessibility, MSC are often isolated 
from adipose tissue (e.g. from liposuction aspirates). Because 
of the heterogeneity of purifications, the term mesenchymal 
stem/stromal cells (rather than mesenchymal stem cells) is now 
preferred by the scientific community. MSCs can be cultured 
and differentiated into various cells and tissues in vitro. Specific 
functional differentiation can be actively controlled by activation 
or suppression of genes, resulting in the formation of bone 
marrow stroma supporting hematopoiesis or differentiating 
into osteogenic, chondrogenic or adipogenic cells. In addition, 
differentiated MSCs are capable of transforming into another 
tissue and adapting to novel environmental conditions.

Signaling agents for these regeneration and growth processes 
are cell-cell contacts and the secretion of growth factors 
and cytokines. They are mostly obtained from bone marrow 
(aspiration from iliac crest, also tibia or femur). In stem cell 
transplantation, the hematopoietic components from bone 
marrow (or peripheral blood) are transferred to the tumor 
patient previously treated by total body irradiation or high-dose 
chemotherapy; MSCs play an essential role in the reconstruction 
of the destroyed bone marrow.

Hepatic Progenitor Cell Transplantation

Hepatic stellate cells (HSCs) are best known for their 
involvement in fibrosis development. In contrast, their function 
in the normal liver has remained largely unclear. Our studies 
now show that HSCs can be regarded as mesenchymal stem 
cells (MSCs) and can fulfill their functions. Thus, rat HSC 
express typical markers of MSC such as nestin, NG2 (neural-
glial antigen 2), CD105 (endoglin) as well as CD146 and are 
able to differentiate into adipocytes as well as osteocytes in vitro. 
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Furthermore, isolated HSCs support the maintenance as well as 
differentiation of hematopoietic stem cells in a co-culture system 
and can thus replace MSC of the bone marrow.

Transplanted eGFP+ HSC, previously purified by FACS 
(fluorescence-activated cell sorting) based on their retinoid 
fluorescence, colonize the bone marrow of recipient animals in 
accordance with their characterization as MSC. After damage 
to the liver by partial hepatectomy and concomitant application 
of 2- acetylaminofluorene, FACS-sorted HSC reach the injured 
liver of the recipient animal and form approximately 11% 
(± 2%) of the liver tissue after 7 to 14 days. The transplanted 
HSCs give rise to hepatocytes and cholangiocytes in addition to 
mesenchymal tissue.

During their differentiation into hepatocytes in vitro, HSCs, 
like bone marrow- and umbilical cord-derived MSC, transiently 
undergo the expression profile of hepatic progenitor cells (oval 
cells), which typically express keratin 19, EPCAM (epithelial cell 
adhesion molecule), and α-fetoprotein. Finally, in the course 
of their hepatic differentiation, HSCs and other MSCs exhibit 
the synthesis of a broad spectrum of bile salts as well as the 
transporters BSEP (bile salt export pump) and NTCP (sodium 
taurocholate cotransporting polypeptide) in addition to the 
release of albumin. These findings indicate for the first time that 
oval cells arise from stellate cells or other MSCs in the body and 
thus HSCs may fulfill an important role in liver regeneration.

Multi-Organ)

Acute (ALV), chronic (CLV), and acute-on-chronic 
liver failure (ACLV) occur frequently in critical care and are 
associated with high mortality. Since the accumulation and lack 
of elimination of endogenous and exogenous toxins is one of 
the main problems in any form of liver failure, the focus today 
is on the use of detoxification systems that primarily support 
the detoxification function of the liver and thus indirectly its 
regeneration. This chapter introduces the MARS ("molecular 
adsorbents recirculatory system") and Prometheus procedures. 
However, the standard use of extracorporeal liver support 
systems cannot be recommended in acute or acute-on- chronic 
liver failure or alcohol toxic hepatitis. In special situations, 
however, their use may be helpful, either as a bridge to possible 
transplantation or until recovery of liver function.

Discussion
Organoids are three-dimensional (3D), multicellular 

microtissues derived from stem cells and engineered to 
mimic the complex structure and functionality of a human 
organ, such as the lung, liver, or brain [1-35]. Organoids are 
multicellular and exhibit a high degree of self-assembly. They 
further reproduce complex in vivo cell responses and cell 
interactions compared to traditional 2D cell cultures. There are 
three unique definitions that constitute an organoid. It is a 3D 
biological microtissue that contains different cell types [36-39]. 
It reflects the complexity, organization and structure of a tissue. 
It shows similarity to at least one functional aspect of a tissue. 
Organoids are becoming increasingly important in the fields 
of cancer research, neurobiology, stem cell research, and drug 
discovery because they enable improved modeling of human 
tissues. Because they are generated from stem cells, organoids 
can be differentiated into a wide range of tissue types, including 
liver, lung, brain, kidney, stomach and intestinal tissues. 
Because these 3D microtissues mimic in vivo organs, they can 
provide researchers with greater insights into the mechanisms 

of human development and disease. For example, researchers 
can use organoids from genetically modified cells to determine 
how certain gene mutations relate to specific genetic diseases. 
Organoids can also enable the study of infectious diseases and 
host-pathogen interactions. Last but not least, the ability to 
use patient-derived organoids for drug screening and toxicity 
assessments will allow researchers to make further advances 
in personalized medicine. Due to the increasing complexity of 
organdies and other 3D cell systems, even more sophisticated 
techniques for 3D imaging and analysis are required to 
accurately and efficiently describe these biological structures. 
Today, automated confocal imaging systems and 3D image 
analysis software are widely used to help researchers optimize 
their workflow and achieve optimal results [30,36,39-42]. Self-
organization makes life easier for organoid researchers, but it 
has its limits in vitro. Despite regular divisions, most organoids 
develop a necrotic core and stop developing [27,36,41,43]. 
Photoreceptors on the organoid surface, for example, continue 
to mature after a year, but the internal structure deteriorates 
over time. This is because diffusion alone cannot provide the 
metabolic requirements for nutrient and oxygen supply and 
waste disposal at the center of an organoid. This limits organoids 
to diameters of three to four millimeters. A number of ideas now 
exist to delay necrosis. For example, the organoid diameter can be 
limited - for example, by culturing at an air-liquid interface, with 
vibratomes, or with artificial chips that physically allow growth 
in only two spatial directions. None of this, however, solves 
the actual perfusion problem. That is why vascular networks 
are considered the holy grail of organoid research [32]. Liebau 
explains the methodological challenge as even with the addition 
of endothelial stem cells, organoids are not automatically infused 
with blood vessels. Growth and organoid growth are different. In 
vitro self-organization fails here. In embryogenesis, for example, 
the retina is not directly vascularized either, and blood vessels 
only grow in later. Replicating this interaction of two entities 
in vitro while outsmarting biology is difficult. One approach to 
solving the problem is offered by certain 3D bio-printers, known 
as inverse extrusion printers. They print networks of 0.4- to 
1-millimeter-wide gelatin channels into densely packed clusters 
of cells, which are then liquified, lined with endothelial cells and 
flooded with oxygenated medium. From human iPS cells, they 
grew vascular organoids whose endothelial cells and pericytes 
formed a capillary network. After transplantation into mice, the 
capillaries even interconnected with the murine bloodstream 
and formed perfused arteries, arterioles and venules [1-105]. 
Three-dimensional tissue models are more produced in the 
Petri dish to develop blood-liver organoids that can be used 
to observe disease processes at the cellular and molecular 
levels [32,41,43,44]. Organoids, often referred to as miniature 
organs, are cell culture models that represent a tissue in three 
dimensions in the Petri dish. Researchers usually grow them 
from stem cells that are not yet or barely differentiated. They can 
develop into any cell type, such as heart or kidney cells, muscle 
cells or neurons. In the laboratory, they become liver cells. 
As in real organ tissue, these are permeated by various blood 
and immune cells. Liver cells do not develop in a vacuum, but 
together with white blood cells and other cells of the body's own 
defense system. And like real liver cells, the liver cells created by 
his group produce blood - visible as red spots between the rice-
grain-sized clusters of cells. Organoids are a kind of window 
into a previously inaccessible organ, the fetal liver. Tickling liver 
cells awake with genetic scissors is possible. In organoids, this 
genetic manipulation works much better than in cells derived 
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from animal models [42,45]. For example, liver cells that slip 
into an identity crisis in the course of chronic liver disease and 
no longer behave like liver cells can be genetically reactivated in 
the Petri dish. With the help of the gene scissors CRISPR, it is 
possible to intervene in a liver cell so that it once again does what 
a liver cell must do. In this way, the miniature organs help reduce 
the number of animal searches. New gene therapies can first be 
tested on organoids.

Animal experiments are then only necessary to confirm the 
experiments in the living organism. Another advantage, he said, 
is that organoids are available almost indefinitely because their 
cell source never dries up. In conclusion, organoid research is 
a very interesting field for the future to treat and cure different 
pediatric diseases like homocysteinuria or other rare diseases 
[1-105].

Organoid research will be performed worldwide and it is a 
challenge for the future to implant organoids into human being 
and to restore, especially in homocysteinuria, the function of the 
liver.
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