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ABSTRACT 
 

The fibroblast growth factor receptors play a crucial role in binding to fibroblast growth 
factor and are involved in various pathological conditions. These receptors consist of an 
extracellular ligand domain, a transmembrane helix domain, and an intracellular domain with 
tyrosine kinase activity. There are over 48 different isoforms of FGFR. Each FGF receptor in ligand-
binding properties and kinase domains. The FGF/FGFR signaling pathway is implicated in various 
pediatric cancers and therefore are both non-selective and selective FGFR inhibitors available. 
Additionally, there are five distinct membrane FGF receptors dentified in vertebrates. 
All belonging to the tyrosine kinase superfamily. In this manuscript, the focus is based on an 
analysis of the role of FGF receptor signaling pathways and aberrations especially in pediatric 
diseases. Erk 1 and Erk 2 seem to have an important role as a mediator of FGF signaling in 
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different biological and developmental processes. FGF signaling plays an important role in 
conserved developmental functions in skeletal growth, palate closure, ear development, cranial 
suture ossification and neuronal development in the child. Aberrant FGF signaling causes different 
congenital disorders and different forms of cancer in childhood. Modulating FGF signaling is of 
great importance for the treatment of rare diseases in childhood.  
 

 
Keywords: FGF; receptor; signaling pathway; aberration; pediatric, disease. 
 

1. INTRODUCTION 
 
The fibroblast growth factors are a group of 
growth factors known as the FGF family. A total 
of 23 members of the FGF group are known to 
date: FGF-1 to FGF-23. FGFs are single-chain 
polypeptides with a mass usually between 16 
and 22 kDalton. They are signaling proteins that 
are important and potent regulators of cell growth 
and differentiation. They play a key role in 
embryonic development. Accordingly, 
disturbances of FGF functions lead to severe 
developmental disorders in the embryonic period. 
In the adult organism, FGFs control tissue repair 
processes and are actively involved in the 
processes of wound healing and the formation of 
new blood vessels, as well as in the regeneration 
of nerves and cartilage tissue. FGFs have been 
detected in almost all tissues of the organism. 
FGFs control and alter or usually stimulate the 
proliferation, migration and differentiation of cells, 
especially endothelial cells, but also smooth 
muscle cells and fibroblasts. The complex 
process of angiogenesis is essentially controlled 
and influenced by growth factors of the FGF 
family. Prototypes of the FGF family are FGF-1 
(acidic-FGF) and FGF-2 (basic-FGF). FGF 
molecules bind to their specific receptors (FGFR 
= FGF receptor) on the cell surface. FGFRs are 
receptor tyrosine kinases which -after binding the 
ligand FGF-are activated by autophosphorylation 
and initiate an intracellular signaling cascade 
with subsequent gene activation. FGFRs consist 
of an extracellular region containing three 
immunoglobulin-like (IG-like) protein domains 
(D1-D3), a single transmembrane helix, and an 
intracellular protein domain with tyrosine kinase 
activity. There are four FGFRs: FGFR1, FGFR2, 
FGFR3, FGFR4. Alternative mRNA splicing of 
the FGFR1-3 receptors results in additional 
forms of FGFRs (a total of seven FGFRs are 
known), which are designated "b" and "c". FGF-1 
is the only ligand that binds to all seven cell 
surface receptors. The actual signaling complex 
formed at the cell membrane after binding of 
FGF and FGFR is called a ternary complex, 
which consists of two identical FGF ligands, two 
identical FGF receptor units and either one or 

two heparan sulfate chains. A special feature of 
the mechanism of action of FGFs is that it is 
significantly enhanced by the particularly high 
affinity of FGFs for proteoglycans, heparan 
sulphates and heparin (glycosaminoglycan). This 
is why the growth factors of the FGF family were 
previously also referred to as heparin-binding 
growth factors (HBGFs). 
 

2. 23 FIBROBLAST GROWTH FACTORS 
AND CO-factors 

 
FGF-1 is the most active growth factor of the 
FGF family [1-53]. It consists of 141 amino acids 
[1-52]. The FGF-1-encoding gene is located on 
chromosome 5. Due to its comprehensive 
binding capacity with all FGF receptors, the 
biological, mitogenic cell effects are particularly 
pronounced and characterized by the initiation of 
cell proliferation, migration and differentiation. 
FGF-1 has a particular effect on endothelial cells, 
but also on many other cell types. Due to the 
particularly pronounced angiogenic activity of 
FGF-1, FGF-1 has recently been studied more 
intensively in clinical research and used in 
various clinical studies in human medicine [1-53]. 
The plasma half-life of FGF-1 after 
intramyocardial injection is between 0.4 and 4.6 
hours. High purification of FGF-1 by SDS-
polyacryamide gel electrophoresis. FGF-2 (b-
FGF) has a similar molar mass to FGF-1; its 
structure is more than 50 % identical to that of 
FGF-1. The FGF-2 coding gene is localized on 
chromosome 4. The effects of FGF-2 are similar 
to those of FGF-1, but not quite as pronounced. 
It is also produced by adipocytes and influences 
bone metabolism.  
 
FGF-3 consists of 240 amino acids, its structure 
is approximately 40 % homologous with FGF-1; 
the coding gene is located on chromosome 11 
[1,6,7]. The physiological effects of FGF-3 are 
still poorly understood, but it is possible that 
FGF-3 may be particularly important during 
embryonic development. FGF-4 (formerly K-FGF 
or hst1) consists of 206 amino acids, is 40 % 
homologous with the structure of FGF-1-3, and 
the coding gene is located on chromosome 11. 
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FGF-4 is frequently found in tumors, especially in 
gastric tumors. In healthy adult tissues, FGF-4 is 
only present in low concentrations. FGF-5 
consists of 251 amino acids, the coding gene is 
located on chromosome 4. FGF-5 apparently 
plays an important role during embryonic 
development, but in adult tissues, FGF-5 is only 
present in very low concentrations. FGF-6 is 70 
% homologous with FGF-4. The coding gene is 
located on chromosome 12. Little is known about 
its effects, but FGF-6 may play a role in wound 
healing. FGF-7 was first called keratinocyte 
growth factor; it has a specific proliferative effect 
on epithelial cells. The coding gene is located on 
chromosome 15. FGF-8 (gene localization on 
chromosome 10) may play a key role in the 
formation of the extremities during embryonic 
development. FGF-9, initially referred to as 
glioma-derived growth factor (GDGF), stimulates 
in particular the proliferation and activation of 
glial cells in the brain. FGF-10 to FGF-22: 
Although the structures and amino acid 
sequences of these growth factors have been 
described, little is known about the detailed 
functions of these proteins. FGF-18 stimulates 
the formation of cartilage in model organisms 
when injected intraarticularly. A recombinantly 
produced human FGF-18 is currently undergoing 
clinical trials. FGF-23 is secreted by osteocytes 
and is an important regulator of the phosphate 
and vitamin D balance. FGF-23 stimulates the 
excretion of phosphate by the kidneys. The task 
of FGF-23 is to keep phosphate levels in the 
blood constant despite varying phosphate intake 
with food. Increased blood levels of FGF-23 lead 
to a drop in the phosphate level in the blood 
(hypophosphatemia), reduced production of 1,25 
(OH)2 vitamin D and rickets or bone softening. 
Reduced blood levels of FGF-23 lead to 
increased phosphate levels in the blood 
(hyperphosphatemia), increased production of 
1,25 (OH)2 vitamin D, soft tissue calcification, 
excessive bone formation (hyperostosis) and 
reduced life expectancy.  In kidney patients who 
have to start dialysis treatment, increased FGF-
23 levels are associated with increased mortality. 
FGF-23 binds to the FGF receptor 1c and the co-
receptor Klotho. Activation of this receptor 
complex in the proximal tubule in the nephron of 
the kidney inhibits the reabsorption of phosphate 
from the primary urine and thus has a phos-
Activation of this receptor complex in the 
proximal tubule in the nephron of the kidney 
inhibits the reabsorption of phosphate from the 
primary urine and thus has a phos-Activation of 
this receptor complex in the proximal tubule in 
the nephron of the kidney inhibits the 

reabsorption of phosphate from the primary urine 
and thus has a phosphoric effect. 
 

3. CO-FACTORS 
 

Eight factors belonging to the fibroblast growth 
factor family are known [1-53]. These are acidic 
FGF (aFGE), basic FGF (bFGF), int-2, Kaposi 
sarcoma FGF (K. FGF), also known as the 
product of hst-l oncogene, FGF5, FGF6, 
keratinocyte growth factor (KGF) and androgen 
induced growth factor (AIGT). These 
polypeptides are 35-55% identical in their amino 
acid sequence and the aquainted genes have 
similar exon- intron structures. In contrast to the 
other members of the family, aFGF and bEGF 
lack a signal sequence, and the mechanism of 
their secretion is not yet fully understood. The 
most widely studied FGEs, aFGf and bFGE, 
appear to elicit very similar biological responses 
in most target cell types. These two factors have 
effects in vito on a wide variety of cells of 
mesodermal, neutroectodermal as well as 
endodermal origin. They support the survival of 
neural cells and stimulate the proliferation of 
many cell types including fibroblasts, endothelial 
cells, smooth muscle cells, hepatocytes and 
skeletal myoblasts. aFGF and bFGE can also 
affect cellular differentiation: both factors 
stimulate the outgrowth by Polz rat 
pheochromocytoma cells and are capable of 
blocking myoblasts of the skelet differentiation. In 
addition, bFGF has been claimed to enhance the 
cloning efficiency of hematopoietic progenitor 
celis. Other PGEs may have more specific 
functions. The mitogenic activity of KGF seems 
to be restricted to epithelial cell lines. In vitro 
bFGE has been implicated in mesoderm 
induction in Xenopus embryos. Disruption of the 
FGF signaling by expression of a dominant 
negative mutant of the Xenopus FGF receptor 
has recently been shown to inhibit the formation 
of mesodermal tissues. Other members of the 
FGF l family also seem to function in 
developmental processes. In addition to inducing 
proliferation and migration of endothelial cells in 
culture, bFGF and aFGF also induce 
neovascular structures in vivo. It was recently 
claimed that the progression and 
neovascularization of fibro sarcomas of 
transgenic mice carrying the bovine 
papillomavirus genome is correlated with 
enhanced secretion of bFGF. 
 

4. LIGAND BINDING SPECIFICITY 
 

The ligand binding represents the first step in 
activating the FGFR signaling cascade. FGFR`s 
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are based on three immunoglobulin-like domains 
(IgI-III) [48]. The ligand binding specificity 
depends on splicing of the C terminus of the Ig III 
domain, which will be encoded by exon 8 and 9 
to produce FGFRb or FRGFRc isoforms, which 
correlate to receptors of epithelial or 
mesenchymal tissues [48].  
 

5. INTRACELLULAR SIGNALING WITH 
PROTEIN INTERACTIONS 
(MODULATORS) OF FGFR 1-4 

 
Known intracellular protein interactions of 
FGFR1-4 are Frs2 and 3, CrkL and II, Shb, SH2, 
Grb14, Stat1 and 3, Src, SH2, SH3 and p85 
protein [48]. Some interactions depend on 
additional FGFR1-4 mutations [48]. FGF 
signaling seems to be the major driver of Erk1 
and 2 activation in many different developmental 
processes. For example, FGF4-Erk 1 and 2 
regulate the primitive endoderm specification. 
Erk 1 and 2 signaling is necessary for primitive 
endoderm formation [48]. FGF-Erk1/2 signaling 
regulates epithelial-mesenchymal interactions in 
the limb [48]. Genetic disruption of FGF-10 or 
FGFR2b results in complete agenesis of the 
limbs [49]. Conditional disruption of FGF8 and 
FGF4 or FGFR2 in epithelial tissue causes 
complete agenesis of the hindlimb [50]. FGFR3 
functions through Erk1/2 for inhibiting 
chondrocyte hypertrophic differentiation [48]. 
Loss of FGFR3 function causes long bone 
overgrowth, activated mutations in FGFR3 cause 
skeletal dwarfism like achondroplasia in 
childhood [48].  Erk1/2 and STAT 1 seem to 
regulate FGFR3 mediated inhibition of 
chondrocyte proliferation [51,52]. FGFR1 is part 
of complex binding with FGF23 and Klotho in X-
linked hypophosphatemia [53]. Klotho-FGFR1-
FGF23 trimeric complex signaling plays an 
important role in X-linked hypophosphatemia in 
childhood and inhibition of this complex could 
diminish the level of FGF in the kidney in this 
disease [53].  
 

6. CHEMICAL STRUCTURES OF FGFs 
 
The first FGFs were discovered and their 
chemical structures are described in the 1970s 
[1-53]. Initially, it was assumed that they acted 
exclusively on fibroblasts. However, it was later 
discovered that FGFs have much more general 
functions - especially proliferation and 
differentiation - and can act on almost all cells. 
Today, even FGFs are known that there is no 
effect on fibroblasts, FGF-7 and FGF-9. FGF-1 
and FGF-2 were initially obtained and isolated 

from the brain of cattle, and later the structures of 
the human growth factors FGF-1 and FGF-2 
were also described. The enhancing effect of 
heparin and heparan sulphates on the function of 
FGFs was recognized early on. To date, 23 
different sub-types of the FGF family have been 
described. The different FGF types have 
intensive mitogenic activities and are of great 
importance for organ differentiation and 
development in the embryonic period. They 
regulate cell proliferation, migration and 
differentiation. Regular cell and tissue 
differentiation is not possible without FGFs. In 
adult tissues and organs, FGFs - especially FGF-
1 - have an extremely intensive activity on the 
induction of angiogenesis. This property of FGFs 
has recently aroused the interest of medical 
research, as angiogenesis can be used as a 
therapeutic principle in disease states and 
disorders in which arterial blood flow is impaired, 
coronary heart disease (CHD) and peripheral 
artery disease (PAD). Coronary heart disease 
(CHD) and peripheral arterial occlusive disease 
(PAD). Hypoxia and ischemia trigger the 
secretion of FGF-1 and FGF-2, resulting in an 
up-regulation of FGF receptors in the tissue. 
Hypoxia and ischemia trigger the secretion of 
FGF-1 and FGF-2, resulting in an up-regulation 
of FGF receptors in the tissue. Clinical studies 
with patients suffering from severe coronary 
heart disease have demonstrated FGF-1-induced 
new vessels in the human heart muscle, as well 
as a local increase in blood flow with a reduction 
in angina pectoris symptoms. FGFs, especially 
FGF-1, also have a wound healing-promoting 
effect in cases of wound healing disorders. 
FGFR signaling can also lead to the activation of 
various downstream effectors, such as cell, 
survival, migration, and differentiation [8,25,51]. 
These functions are essential for normal 
development and tissue homeostasis. 
Dysregulation of FGFR signaling can lead to 
various diseases, including cancer, skeletal 
dysplasia, and developmental disorders [1,4,7,9]. 
Understanding the complex functions of FGFR 
signaling is crucial for developing targeted 
therapies for different pediatric diseases in the 
future [1-53]. 
 

7. CONCLUSION 
 
The fibroblast growth factor family plays a key 
role in various developmental processes such as 
brain patterning, branching morphogenesis, and 
limb development. Researchers are currently 
exploring the therapeutic potential of FGFs in 
promoting cell growth, protecting cells, and 
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stimulating blood vessel formation. Recent 
studies have highlighted the important functions 
of the endocrine-acting FGF19 subfamily in 
regulating bile acid, glucose, and phosphate 
levels, leading to increased interest in the 
potential medical applications of these 
molecules. There is a potential in treating 
metabolic syndromes, skeletal dysplasia, cancer 
and hypophosphatemic disorders in childhood by 
altering fibroplast growth factor signaling 
pathways.  
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