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ABSTRACT 
 

Primary bile acid disorders (BASD) in newborns are rarely found with a prevalence of 1-9/1,000,000 
and include 1-2 % of all cases with neonatal cholestasis. Causes are different gene defects, which 
lead to liver enzyme defects, which play a major role in both cholic acid pathways, the classical with 
production of cholic acid and the alternative one with chenodeoxycholic acid. They are found in both 
genders in the same distribution. Early diagnosis is very important to introduce a bile acid 
replacement therapy as soon as possible as the treatment of choice to date. Diagnosis will be 
confirmed by molecular trsting, liver biopsy and different forms of mass spectrometry methods. 
Differential diagnosis includes progressive familial intrahepatic cholestasis, neonatal hepatitis and 
biliary atresia. Further gene therapy approaches must be developed, like CRISP Cas9 technology, 
to repair the spontaneous point mutations on DNA of these patients to cure and not to treat them 
their whole life finally. 
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1. INTRODUCTION 
 
Inherited defects in bile acid synthesis are rare 
genetic disorders that can manifest as neonatal 
cholestasis, neurological issues, or deficiencies 
in fat-soluble vitamins [1-67]. There are nine 
recognized defects in bile acid synthesis, 
including deficiencies in oxysterol 7α-
hydroxylase, Δ4-3-oxosteroid-5β-reductase, 3β-
hydroxy-Δ5-C27-steroid dehydrogenase, 
cerebrotendinous xanthomatosis (sterol 27-
hydroxylase deficiency), α-methylacyl-CoA 
racemase, and Zellweger syndrome 
(cerebrohepatorenal syndrome). These 
conditions are characterized by the inability to 
produce normal bile acids and an accumulation 
of abnormal bile acids and bile acid 
intermediates. Individuals with inherited defects 
in bile acid synthesis typically have normal or low 
serum bile acid levels, normal γ-glutamyl 
transpeptidase levels, and no itching. “Failure to 
diagnose these conditions can lead to liver failure 
or chronic liver disease. Early identification can 
lead to significant clinical improvement with oral 
bile acid therapy. Inborn errors of bile acid 
synthesis are rare genetic disorders that account 
for 1–2% of neonatal cholestasis cases, 
characterized by conjugated or direct 
hyperbilirubinemia in early infancy. Most patients 
with inborn errors of bile acid synthesis respond 
well to oral bile acid therapy. Cholic acid and 
chenodeoxycholic acid, the primary bile acids, 
are produced through a series of enzymatic 
modifications to cholesterol involving at least 14 
enzymes, multiple subcellular compartments, 
and two complementary chemical pathways. The 
main route for bile acid synthesis is the classic 
'neutral' pathway, which produces both cholic 
acid and chenodeoxycholic acid in equal 
amounts. The rate-limiting step in this pathway is 
the modification of the steroid nucleus, catalyzed 
by cholesterol 7α-hydroxylase. The farnesoid X 
receptor (FXR) regulates CYP7A1 through bile 
acids. FXR is a ligand-activated transcription 
factor that acts on target genes as a monomer or 
heterodimer with RXR. Bile acids are natural 
ligands for FXR, with chenodeoxycholic acid 
being the most potent activator. FXR activation 
leads to upregulation of SHP, which inhibits LRH-
1's ability to activate CYP7A1. An alternative 
'acidic' pathway involves C27-hydroxylation of 
cholesterol followed by C7α-hydroxylation. Side-
chain modification occurs after steroid nucleus 
modification in mitochondria and peroxisomes. 
The final step is the conjugation of cholic acid 

and chenodeoxycholic acid to taurine or glycine” 
[68]. Deficiencies in genes encoding enzymes 
involved in bile acid synthesis pathways can 
cause liver disease by reducing canalicular bile 
acid secretion and accumulating potentially 
hepatotoxic bile acid precursors. These 
disruptions typically present as cholestasis in 
infants, resembling other neonatal liver diseases 
like biliary atresia. 
 

2. CLASSICAL AND ALTERNATIVE BILE 
ACID PATHWAYS 

 
Bile acid synthesis involves two pathways: the 
classic 'neutral' pathway and the alternative 
'acidic' pathway. In the classic pathway, 
cholesterol is converted to 7α-hydroxycholesterol 
by cholesterol 7α-hydroxylase, which is the rate-
limiting step. Enzymes like HSD3B7, sterol 12a-
hydroxylase, AKR1D1, and 3α-hydroxysteroid 
dehydrogenase then modify the steroid nucleus 
and side chain to produce cholic acid and 
chenodeoxycholic acid. “In the alternative 
pathway, cholesterol is converted to 3β-hydroxy-
5-cholestanoic acid by CYP27A1, followed by 
conversion to 3β, 7α-dihydroxy-5-cholestenoic 
acid by CYP7B” [68]. 
 

3. DISCUSSION 
 

“The prevalence of bile acid synthesis (BAS) 
defects is estimated to be around 1-9 per 
1,000,000, excluding cerebrotendinous 
xanthomatosis” [1-67]. “Inborn errors in BAS 
likely contribute to 1-2% of unexplained liver 
diseases in infants, children, and adolescents” 
[3,7,9,11,23]. “The age at diagnosis varies, with 
presentations in infancy, childhood, or adulthood. 
Infants and children may experience 
complications due to fat malabsorption and 
vitamin deficiencies, leading to conditions like 
rickets, bleeding diathesis, neuroaxonal 
dystrophy, and night blindness” [1,5,7,9,14,24]. 
“There are seven known inborn errors of BAS 
causing liver cholestasis, including 3-beta-
hydroxy-C27-steroid oxidoreductase deficiency 
(BAS defect type 1), delta4-3-oxosteriod-5-beta 
reductase deficiency (BAS defect type 2), 
oxysterol 7alpha-hydroxylase deficiency (BAS 
defect type 3), 2-methylacyl-CoA racemase 
deficiency (BAS defect type 4), 
trihydroxycholestanoic acid (THCA) CoA oxidase 
deficiency, bile acid CoA ligase deficiency, and 
defective amidation, along with cerebrotendinous 
xanthomatosis” [16,23,24,37,68]. “Cholesterol 
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Table 1. Genetic, biochemical and clinical features of bile acid synthesis defects in the newborn 
 

Enzyme defect Gene encoding the 
affected enzyme 
(reference) 

Urine bile acid profile serum bile acid profile Clinical features 

Oxysterol 7α-hydroxylase 
deficiency 

CYP7B14 ↑ Sulfate and glycosulfate 
conjugates of 3β-δ5-monohydroxy 
bile acids Absence of primary bile 
acids 

Extremely high levels of bile 
acids, primarily 3β-δ5-
monohydroxy bile acids 

Neonatal hepatitis (single 
reported case; unrecognized 
cases could be due to prenatal 
or early-postnatal death) 

Δ4-3-oxosteroid-5β-
reductase deficiency 

AKR1D1(SRD5B1)  ↑ 3-oxo-δ4 bile acids 
↑ Allo bile acids 
↓ Primary bile acids 

↑ 3-oxo-δ4 bile acids 
↑ Allo bile acids 
↓ Primary bile acids 

Neonatal hepatitis with rapid 
progression to liver failure 
Neonatal hemochromatosis 

3β-hydroxy-Δ5-C27-steroid 
dehydrogenase deficiency 

HSD3B7  ↑ Dihydroxy & trihydroxy 
cholenoic acids 
↓ Primary bile acids 

↓ or absence of primary bile 
acids 

Neonatal hepatitis 
Late-onset liver disease 
Malabsorption 

Cerebrotendinous 
xanthomatosis (sterol 27-
hydroxylase deficiency) 

CYP27A1 ↑ Plasma cholestanol: cholesterol 
ratio 

↑ Bile alcohol glucuronides Progressive neurologic 
dysfunction in 2nd–3rddecade of 
life 
Chronic diarrhea 
Bilateral juvenile cataracts 
Neonatal cholestasis 

Alpha methylacyl-CoA 
racemase deficiency 

AMACR gene on 
chromosome 5p13.2-
q11.171 

↑ C27 trihydroxycholestanoic and 
pristanic acid 
↓ Primary bile acids 

↑ C27 trihydroxycholestanoic 
and pristanic acid 
↓ Primary bile acids 
Normal long-chain fatty acids 
and phytanic acid 

Adult onset peripheral 
neuropathy 
Neonatal cholestasis with 
considerable fat-soluble-vitamin 
deficiency 

Zellweger syndrome 
(cerebrohepatorenal 
syndrome) 

12 PEX gene 
mutations; 
PEX1 mutations are the 
most common. 

Atypical monohydroxy, dihydroxy 
and trihydroxy C27 bile acids 
↓ Primary bile acids 

↑ Long-chain fatty acids 
↑ Cholestanoic and pipecolic 
acid 
↑ C29 dicarboxylic acid 
↓ Primary bile acids 

Craniofacial abnormalities 
Neuronal migration defects 
Polycystic kidneys 
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7alpha-hydroxylase deficiency leads to 
hypercholesterolemia without liver cholestasis. 
Diagnosis is based on hepatic enzyme and 
bilirubin profiles, along with urine, serum, and 
bile analysis using liquid secondary ionization 
mass spectrometry (LSIMS) and gas 
chromatography-mass spectrometry (GC-MS)” 
[1-67]. Differential diagnoses include neonatal 
cholestasis, unexplained vitamin deficiencies, 
liver diseases, and neurologic conditions. Early 
diagnosis is crucial for initiating therapy before 
significant morbidity occurs. BAS defects share 
key clinical features, including normal or low total 
serum bile acid concentrations, minimally 
elevated γ-glutamyl transpeptidase (GGTP) 
levels, and absence of pruritus. A high index of 
suspicion is necessary to prevent overlooking 
these rare disorders, as they can mimic other 
liver conditions [75,76]. Early recognition and 
treatment offer an excellent prognosis, as many 
BAS defects are treatable. Treatment involves 
primary bile acid therapy, with cholic acid, 
ursodeoxycholic acid (UDCA), and glycocholic 
acid being used based on the specific defect 
[23,33,41,42]. Prognosis varies depending on the 
type of defect, with untreated cases leading to 
progressive liver disease or serious 
complications [34,37,43,67]. Early treatment can 
lead to long-term survival and clinical 
improvement [23,55,61]. 

 
4. CONCLUSION 
 
BAS defects represent a rare significant group of 
liver disorders with similar presentations to other 
liver diseases, emphasizing the need for a high 
level of suspicion for accurate diagnosis. Early 
detection and treatment are essential for 
favourable outcomes in these rare conditions. 
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